Ground state and nodal solutions for fractional Schrödinger-Maxwell-Kirchhoff systems with pure critical growth nonlinearity
نویسندگان
چکیده
In this paper, we consider the existence of a ground state nodal solution and solution, energy doubling property asymptotic behavior solutions following fractional critical problem \begin{document}$ \begin{equation*} \begin{cases} (a+ b\int_{\mathbb{R}^{3}}(|(-\Delta)^{\alpha/2}u|^{2})dx)(-\Delta)^{\alpha}u+V(x)u+K(x)\phi u = |u|^{2^{\ast}-2}u+ \kappa f(x,u), (-\Delta)^{\beta}\phi K(x)u^{2}, \quad x\in\mathbb{R}^{3}, \end{cases} \end{equation*} $\end{document} where a, b,\kappa are positive parameters, \alpha\in(\frac{3}{4},1),\beta\in(0,1) , 2^{\ast}_{\alpha} \frac{6}{3-2\alpha} (-\Delta)^{\alpha} stands for Laplacian. By Nehari manifold method, each b>0 obtain u_{b} ground-state v_b to when \kappa\gg 1 nonlinear function f:\mathbb{R}^{3}\times\mathbb{R}\rightarrow\mathbb{R} is Caratheodory function. We also give an analysis on as parameter b\to 0 .
منابع مشابه
Existence of non-trivial solutions for fractional Schrödinger-Poisson systems with subcritical growth
In this paper, we are concerned with the following fractional Schrödinger-Poisson system: (−∆s)u + u + λφu = µf(u) +|u|p−2|u|, x ∈R3 (−∆t)φ = u2, x ∈R3 where λ,µ are two parameters, s,t ∈ (0,1] ,2t + 4s > 3 ,1 < p ≤ 2∗ s and f : R → R is continuous function. Using some critical point theorems and truncation technique, we obtain the existence and multiplicity of non-trivial solutions with ...
متن کاملGround States for Fractional Kirchhoff Equations with Critical Nonlinearity in Low Dimension
We study the existence of ground states to a nonlinear fractional Kirchhoff equation with an external potential V . Under suitable assumptions on V , using the monotonicity trick and the profile decomposition, we prove the existence of ground states. In particular, the nonlinearity does not satisfy the Ambrosetti-Rabinowitz type condition or monotonicity assumptions.
متن کاملPositive solutions for asymptotically periodic Kirchhoff-type equations with critical growth
In this paper, we consider the following Kirchhoff-type equations: $-left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}, quad mbox{in }mathbb{R}^{3},$ $u(x)>0, quad mbox{in }mathbb{R}^{3},$ $uin H^{1}(mathbb{R}^{3}) ,$ where $a,b>0$ are constants and $lambda$ is a positive parameter. The aim of this paper is to study the existence of positive ...
متن کاملNew conditions on ground state solutions for Hamiltonian elliptic systems with gradient terms
This paper is concerned with the following elliptic system:$$ left{ begin{array}{ll} -triangle u + b(x)nabla u + V(x)u=g(x, v), -triangle v - b(x)nabla v + V(x)v=f(x, u), end{array} right. $$ for $x in {R}^{N}$, where $V $, $b$ and $W$ are 1-periodic in $x$, and $f(x,t)$, $g(x,t)$ are super-quadratic. In this paper, we give a new technique to show the boundedness of Cerami sequences and estab...
متن کاملGround state solutions for the nonlinear Schrödinger-Maxwell equations
In this paper we study the nonlinear Schrödinger-Maxwell equations { −∆u+ V (x)u+ φu = |u|p−1u in R3, −∆φ = u2 in R3. If V is a positive constant, we prove the existence of a ground state solution (u, φ) for 2 < p < 5. The non-constant potential case is treated under suitable geometrical assumptions on V , for 3 < p < 5. Existence and non-existence results are proved also when the nonlinearity ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Communications on Pure and Applied Analysis
سال: 2021
ISSN: ['1534-0392', '1553-5258']
DOI: https://doi.org/10.3934/cpaa.2020292